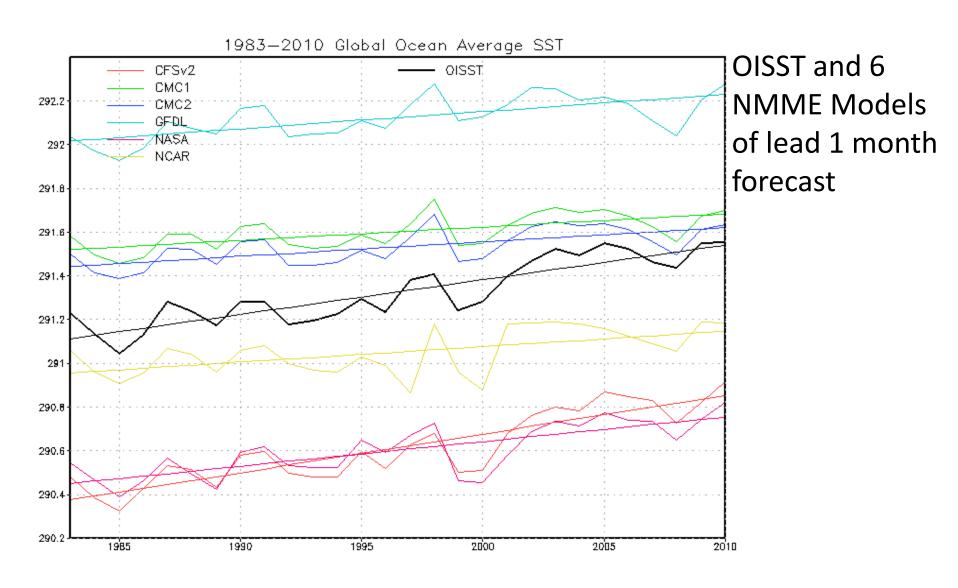
On the Upward Temperature Trend (1983-2010) in the NMME Hindcasts

Qin Zhang and Huug van den Dool

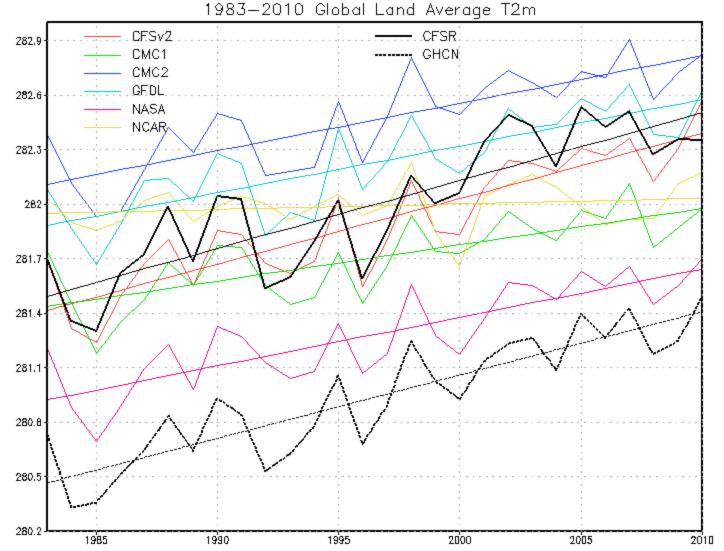
Climate Prediction Center/NCEP/NWS/NOAA

Some Preliminary Thoughts and Questions

- ➤ Little known secret: The skill of seasonal T2m prediction during 1982-present period depends very strongly on the upward T2m trend. (more so than on ENSO, or soil moisture.....).
- Seasonal prediction and climate change are thus mixed up. This makes NMME, unexpectedly, a climate change investigative tool. Do models have the upward trend (correct)? Each center decided on its model version, no carefully designed/coordinated experiment.
- ➤ CFSv1 had no CO2 increase, but still had an upward (albeit too weak) SST/T2m trend (in lead X predictions, X=1 month to X=9 months) over the ocean because of ocean data assimilation.
- In addition to ocean data assimilation, do we need an increase in CO2 to get the SST forecast right?
- ➢ Is a correct SST prediction enough to produce an upward T2m trend over land? Or do we need increases in CO2 in the seasonal forecast model?


NMME Forecast Providers Year 1

Model	Hindcast Period	Ensemble Size	Lead Times	Arrangement of Ensemble Members	Contact and reference
CFSv1	1981-2009	15	0-8 Months	1 st 0Z +/-2 days, 21 st 0Z +/-2d, 11 th 0Z+/- 2d	Saha (Saha et al. 2006)
CFSv2	1982-2009	24(28)	0-9 Months	4 members (0,6,12,18Z) every 5 th day	Saha (Saha et al. 2010)
GFDL-CM2.2	1982-2010	10	0-11 Months	All 1 st of the month 0Z	Rosati (Zhang et al. 2007)
IRI-ECHAM4- f	1982-2010	12	0-7 Months	All 1 st of the month 0Z	DeWitt (DeWitt 2005)
IRI-ECHAM4-	1982-2010	12	0-7 Months	All 1 st of the Month 0Z	DeWitt (Dewitt 2005)
CCSM3.0	1982-2010	6	0-11 Months	All 1 st of the Month 0Z	Kirtman (Kirtman and Min 2009)
GEOS5	1981-2010	6	0-9 Months	1 Member every 5 th day	Schubert (Vernieres et al. 2011)


NMME Forecast providers YEAR 2 & 3

Model name	Period	Members	Arrangement of Members	Lead (months)	Model resident Resolution: Atmosphere	Model resident Resolution: Ocean	Reference
			4 members (0,6,12,18Z)			MOM4 L40 0.25	Saha et al.
NCEP-CFSv2	1982-2010	24(28)	every 5th day	0-9	T126L64	deg Eq	(2010)
GFDL-CM2.1	1982-2010	10	All 1st of the month 0Z	0-11	2x2.5deg L24	MOM4 L50 0.30 deg Eq	Delworth et al. (2006)
CMC1-CanCM3	1981-2010	10	All 1st of the month 0Z	0-11	CanAM3 T63L31		Merryfield et al. (2012)
CMC2- CanCM4	1981-2010	10	All 1st of the month 0Z	0-11	CanAM4 T63L35		Merryfield et al. (2012)
NCAR- CCSM3.0	1982-2010	6	All 1st of the month**	0-11	T85L26	POP L40 0.3 deg Eq	Kirtman and Min (2009)
NASA	1981-2010	6	1 member every 5th day as CFSv2	0-9	1x1.25deg L72		Rienecker et al. (2008)

SST Trend for 1983-2010 Averaged for Global Ocean

T2m Trend for 1983-2010 Averaged for Global Land

CFSR, GHCN and 6 NMME
Models of lead 1 month forecast

Please note

- SST vs T2m issues over the ocean and land
- Some models have been used for IPCC before.
- Not only CO2. GFDL is run under "scenario"
 2004, which prescribes aerosol.
- The choice of the period is 1983-2010 for lead1-8 month forecast.
- Mainly annual mean temperature for model ensemble mean

Compare 30 Years Linear Trend of Global Mean

	CFSR	OISST/ GHCN-CAMS	CFSv2	CMC1	CMC2	GFDL	NASA	NCAR
Ocean	0.46	0.48	0.53	0.18	0.20	0.24	0.34	0.21
Land	1.12	1.05	1.08	0.60	0.79	0.77	0.80	0.09

- Two observational estimates are shown:
- CFSR and OISST agree to within 0.01 that the (global mean) upward trend over the ocean is +0.47. CFSR and GHCN/CAMS agree to within 0.035 that the (global mean) upward trend over the land is +1.075.
- ➤ The 6 model estimates are based on a time series of lead 1-month forecasts, still close to the initial condition. Of the six models CFSv2 has about the right upward T2m trend (global mean). Substantial improvement over CFSv1.
- All other models do have an upward trend, but weak, both over land and ocean. Given that all models strive for a credible ocean data assimilation, it is <u>surprising</u> that so many models have such a weak upward trend in one-month-lead forecast SST over the ocean.
- ➤ The upward trend over land is too weak in 5 out of 6 models, by a few tenths (out of a 1.1 total). Perhaps this is caused by the trends over the ocean being too weak. Curiously the NCAR has virtually no upward trend over land.
- The NCAR model has its GHG increase turned off for the NMME application. Apparently a temperature increase in the ocean alone is not enough to make it warmer over land.

Compare 30 Years Linear Trend for Leading Month

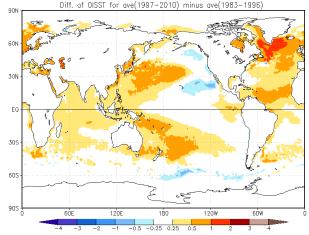
	CFSR	OISST GHCN-CAMS	CFSv2	CMC1	CMC2	GFDL	NASA	NCAR
Ocean	0.46	0.48	0.53	0.18	0.20	0.24	0.34	0.21
Land	1.12	1.05	1.08	0.60	0.79	0.77	0.80	0.09

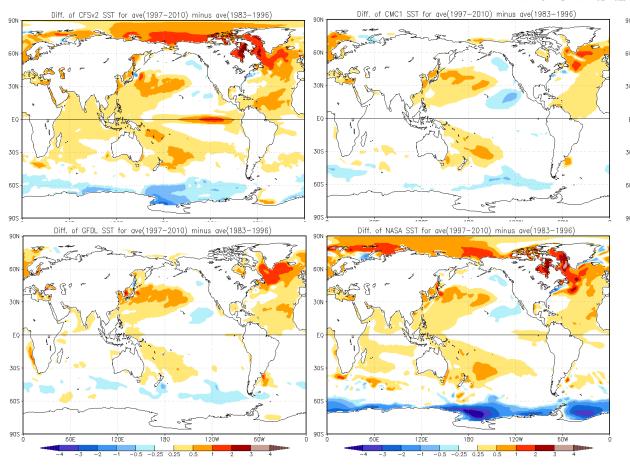
LEAD 1

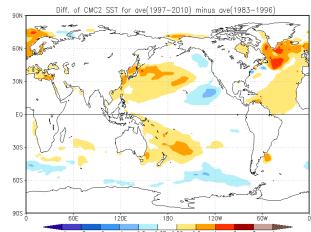
	CFSR	OISST GHCN-CAMS	CFSv2	CMC1	CMC2	GFDL	NASA	NCAR
Ocean	0.46	0.48	0.49	0.09	0.22	0.44	0.21	0.26
Land	1.12	1.05	0.87	0.30	0.62	1.14	0.77	0.08

LFAD 8

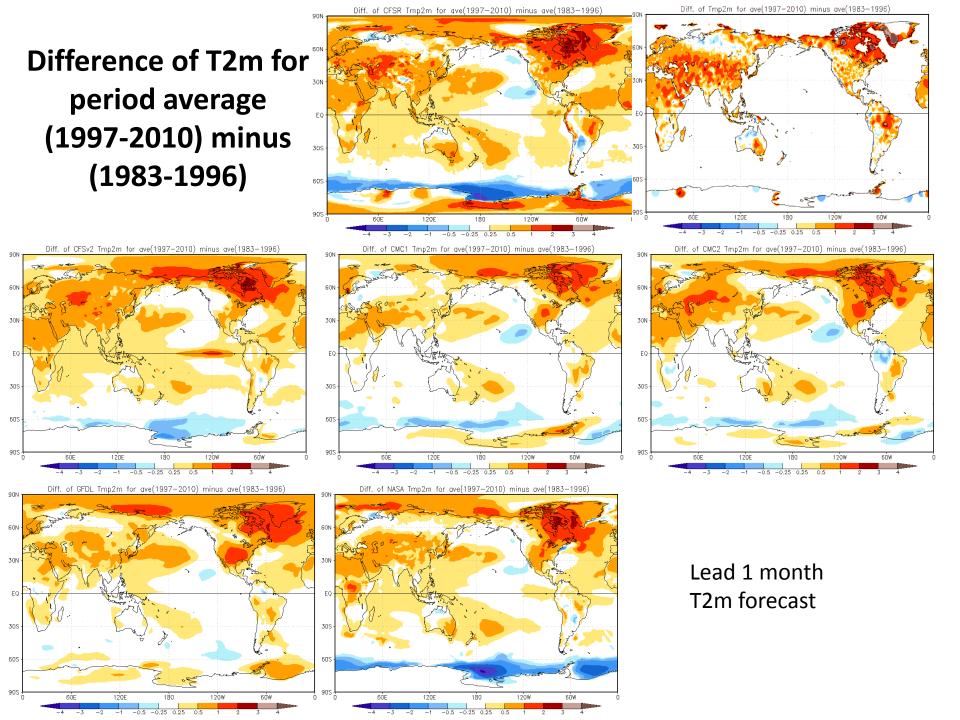
We now compare results for lead 1 (close to initial time) and lead 8 (deeper into the model's climate).


- Most models have equal or weaker trends at lead 8 compared to lead 1. The only clear exception is GFDL. GFDL manages to increase trends, in fact to realistic values, deeper into the forecast, over both land and ocean.
- > CFSv2 is weaker at lead 8 than at lead 1, but still reasonably good and a big improvement over CFSv1.


Compare 30 Years Linear Trend for CFSv1 & 2


	CFSR	OISST GHCN-CAMS	CFSv1	CFSv2	LEAD 1
Ocean	0.46	0.48	0.21	0.53	
Land	1.12	1.05	0.63	1.08	
	CFSR	OISST GHCN-CAMS	CFSv1	CFSv2	
Ocean	0.46	0.48	0.08	0.49	LEAD 8
Land	1.12	1.05	0.26	0.87	

- ➤ Cai et al 2009 concluded that CFSv1 (fixed CO2 at 1988 value) had a weak T2m and SST increase because climate change was forced in only thru the initialized ocean.
- > The upward trend was already weak in the early leads, and eroded to 40% of its initial value at lead 8 months.
- > CFSv2 fixed most of this problem, and CO2 increases help explain what is observed.


Difference of SST for period average (1997-2010) minus (1983-1996)

Lead 1 month SST forecast

Diff. of CFSR Tmp2m for ave(1997-2010) minus ave(1983-1996) Diff. of GHCN Tmp2m for ave(1997-2010) minus ave(1983-1996) Difference of T2m for period average (1997-2010) minus (1983-1996)Diff. of CFSv2 Tmp2m for ave(1997-2010) minus ave(1983-1996) Diff. of GFDL Tmp2m for ave(1997-2010) minus ave(1983-1996) Lead 1 month T2m forecast

Remarks and Discussion

- 1. Most models have weaker upward trend than observed, both over land and over ocean.
- 2. In spite of credible ocean data assimilation models produce upward trends that may differ by a factor of 2 to the lead 1 month SST forecast.
- 3. One model, that turned off the CO2 increase, has temperature increase over the ocean, but not over land.
- 4. Spatial patterns of the trend in T2m and SST are somewhat similar across models, but with plenty of regional exceptions.